NEW ROUTES TO NITROGEN HETEROCYCLES THROUGH INTRAMOLECULAR AMIDOCARBONYLATION OF ALKENAMIDES CATALYZED BY RHODIUM COMPLEXES

Iwao Ojima* and Anna Korda

Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794

Summary: Intramolecular amidocarbonylation of 3-butenamide catalyzed by a rhodium complex with excess PPh₃ gives 3,4-dihydro-2-pyridone selectively, whereas the same reaction using $P(OPh)_3$ affords a unique heterodimer in excellent yield. The reaction of 4-pentenamide gives 4-methyl-3,4-dihydro-2-pyridone exclusively regardless of the structure of rhodium catalysts.

Dihydro-2-pyridone skeleton is one of the important nitrogen heterocycles for pharmaceutical and agrochemical agents.¹ Simple dihydro-2-pyridones have been synthesized by the direct reaction of 2,4-pentadienoic acid or sorbic acid with ammonia² and by the sodium borohydride reduction of glutarimide.³ The former reaction gives a mixture of 3,6-dihydro- and 5,6-dihydro-2-pyridones, while the latter yields 3,4-dihydro-2-pyridones selectively.

We describe here new and convenient routes to 3,4-dihydro-2-pyridones through intramolecular amidocarbonylation⁴ of alkenamides as well as a novel coupling reaction giving 6-(4-methyl-3-pyrrolidin-2-on-1-yl)-2-piperidone.

First, the intramolecular amidocarbonylation of 3-butenamide (1) was carried out using typical rhodium catalysts for hydroformylation, i.e., RhCl(PPh₃)₃, RhCl(CO)(PPh₃)₂, and Rh₄(CO)₁₂, at 80-100^oC and 1,200 psi (CO/H₂ = 3/1 or 1/1) (eq. 1). Results are shown in Table 1.

As Table 1 shows, the reaction under those conditions gave a mixture of 3,4-dihydro-2-pyridone (2), 4methyl-3-pyrrolin-2-one (3), and a heterodimer, 6-(4-methyl-3-pyrrolin-2-on-1-yl)-2-piperidone (4).⁵ It is quite reasonable to assume that 2 and 3 are formed via 6-formylpentanamide (7) and 5-formylpentanamide (8), respectively, whereas 4 is yielded via the crossed coupling of 2 (via 11) and 3 under the reaction conditions, as shown in Scheme 1. It should be noted that only the crossed-coupling product, heterodimer (4), was obtained and no homocoupling of 2 nor 3 was observed at all. Scheme 1

In order to obtain 2-4 selectively, we examined the effects of phosphine ligands on the regioselectivity as well as monomer/dimer selectivity of the reaction. As Table 1 shows (Entry 3), the addition of 20 equivalents of triphenylphosphine to RhCl(PPh₃)₃ remarkably improved the selectivity for the formation of 2 (92%) and no heterodimer (4) was formed. On the order hand, when 10 equivalents of triphenylphosphite were employed instead of triphenylphosphine for RhCl(PPh₃)₃, the heterodimer (4) was produced with excellent selectivity (94%) in 90% yield. The heterodimer (4) may serve as a useful intermediate for the synthesis of tricyclic or tetracyclic nitrogen heterocycles. Reaction conditions which afford 3 selectively have not been found so far.

Next, we employed N-benzyl-3-butenamide (1a) as the substrate (eq. 2).⁶ It was found that the N-benzylation of 1 favors the formation of a 2-pyrrolinone (3a) to some extent, viz., the reaction catalyzed by RhCl(PPh₃)₃ at 1,200 psi (CO/H₂ = 1) gave 3a as the major product, e.g., 3a/2a = 2(70% yield) at 100°C; 3a/2a = 3 (80% yield) at 120°C.⁵ The results make a contrast with those for 1 in which the 2-pyrrolinone (3) is the minor product. However, the addition of 20 equivalents

of triphenylphosphine to $RhCl(CO)(PPh_3)_2^7$ gave 2a with 91% selectivity in 98% yield like the case of 1. Because of the N-protection, no dimer formation was observed with this substrate.

Finally, the reaction of 4-pentenamide (5) was examined in a similar manner (eq. 3). Results are shown in Table 2.

Entry	Catalyst	CO (psi)	H ₂ (psi)	Temp.Time		Yield ^b Product ratio $(\%)^c$			
				(^o C)	(h)	(%)	2	3	4
1	RhCl(PPh3)3	900	300	80	18	92	13	9	78
2	RhCl(PPh3)3/10 PPh3	900	300	80	40	9 9	57	17	26
3	RhCl(PPh3)3/20 PPh3	900	300	80	40	100	92	8	
4	RhCl(CO)(PPh3)2	600	600	100	18	96	18	10	72
5	RhCl(CO)(PPh ₃) ₂ /10 PPh ₃	600	600	100	40	99	47	6	47
6	RhCl(CO)(PPh ₃) ₂ /20 PPh ₃	600	600	100	40	98	74	9	17
7	Rh ₄ (CO) ₁₂	600	600	80	18	98	25	22	53
8	RhCl(PPh3)3/10 P(OPh)3	900	300	80	40	90	3	3	94

Table 1. Intramolecular amidocarbonylation of 3-butenamide $(1)^a$

Table 2.

^a All reactions were run with 3-butenamide (1) (1.50 mmol) and a rhodium catalyst (0.015 mmol) in THF (3.6 mL) in a stainless steel autoclave (300 mL) using a Pyrex reaction vessel (50 mL) with magnetic stirring. Conversion was 100% for all cases. Products were isolated by column chromatography on neutral alumina and identified by ¹H and ¹³C NMRs, IR, and Mass spectroscopies. ^b Determined by GLC analysis. ^c Determined by GLC and ¹H NMR analyses.

amuocaroonyian	ion of 4-pen	itenamide	e (5)"		
					L

Synthesis of 4-methyl-3,4-dihydro-2-pyridone (6) through intramolecular

Entry	Catalyst	CO (psi)	H ₂ (psi)	Temp. (^O C)	Time (h)	Yield ^b (%)
1	RhCl(PPh3)3	600	600	100	18	91
2	RhCl(CO)(PPh3)2	600	600	100	18	89
3	HRh(CO)(PPh3)3	600	600	100	18	88
4	$Rh_4(CO)_{12}$	600	600	100	18	92

^{*a*} All reactions were run with 1.50 mmol of 4-pentenamide and 0.015 mmol of a rhodium catalyst in THF (3.6 mL) in an autoclave (300 mL) using a Pyrex reaction vessel (50 mL). The product, **6**, was isolated by column chromatography on silica gel. ^{*b*} Isolated yield.

As Table 2 shows, the reaction catalyzed by several rhodium complexes gave 4-methyl-3,4-dihydro-2pyridone (6) as the sole product in excellent yield (88-92%). Although the formation of a seven-membered ring lactam is conceptually possible, such a product was not detected at all even when 20 equivalents of triphenylphosphine to RhCl(PPh₃)₃ were employed as additive. The result clearly indicates that a "chelation control" is operative in this reaction. The result also strongly suggests that a similar "chelation control" is operating in the reactions of 1 and 1a as well. Thus, the effects of a large excess of triphenylphosphine to the rhodium catalysts cannot be accommodated by the blocking (or disruption) of the amide-directed "chelation control", but can be interpreted as the regioselective hydroformylation of 1 (or 1a) with the amide chelation intact, viz., it is clearly indicated that the coordination of alkenamide to the rhodium catalysts is much stronger than that of triphenylphosphine.⁸

Further mechanistic investigation as well as application of these reactions to the synthesis of a variety of nitrogen heterocycles are actively underway.

Acknowledgment: This research was supported by the grants from National Institute of Health (NIGMS) and National Science Foundation. A generous support from Mitsubishi Kasei Corp. is also gratefully acknowledged.

References and Notes

- e.g., (a) Jones, R. A.; Bean, G. P. "The Chemistry of Pyrroles"; Academic Press: London, 1977; pp 209-238. (b) Coutts, R. T.; Casy, A. F. "Pyridines and Reduced Pyridines of Pharmacological Interests", In "Heterocyclic Compounds Pyridine and Its Derivatives", Abramovitch (Ed.); John Wiley Interscience: New York, 1975; pp 445-524.
- 2. Kheddis, B.; Bahibah, D.; Hamdi, M.; Périé, J.-J. Bull. Soc. Chim. France, 1981, 135.
- 3. Hubert, J. C.; Wijnberg, J. B. P. A.; Nico Speckamp, W. N. Tetrahedron, 1975, 31, 1437.
- (a) For intramolecular amidocarbonylation of N-allyl- and N-methallylamides giving N-acylpyrrolidines, see Ojima, I.; Zhang, Z. J. Org. Chem., 1988, 53, 4422. (b) For original Co₂(CO)₈-catalyzed amidocarbonylation of aldehydes, see Wakamatsu, M.; Uda, J.; Yamazaki, N. Chem. Commun., 1971, 1540. (c) For applications of Co₂(CO)₈-catalyzed amidocarbonylation, see, e.g., Izawa, K.; Nishi, S.; Asada, S. J. Mol. Catal., 1987, 41, 135; K. Izawa J. Syn. Org. Chem., Japan, 1988, 46, 218. (d) For other applications of amidocarbonylation, see Ojima, I. Chem. Rev., 1988, 88, 1011 and references cited therein.
- 5. 4: mp 151-152°C; ¹H NMR (CDCl₃) δ 1.7-2.1 (m, 2H), 2.2-2.5 (m, 4H), 2.10 (s, 3H), 3.86 (d, J = 18.5 Hz, 1H), 3.98 (d, J = 18.5 Hz, 1H), 5.69 (t, J = 4.2 Hz, 1H), 5.86 (s, 1H); ¹³C NMR (CDCl₃) δ 15.45, 18.89, 27.11, 31.12, 50.89, 59.55, 122.29, 156.81, 172.19, 172.30; IR (KBr disk) 3230 (ν_{NH}), 1682 ($\nu_{C=O}$) cm⁻¹.
- The amidocarbonylation of 1a catalyzed by Co₂(CO)₈ at 100^oC and 1,470 psi (CO/H₂ = 1) was reported to give 3-(N-benzylcarbamoyl)-2-methylpropanoic acid in 69% yield, viz., no formation of nitrogen heterocycles was observed. See Nishi, S.; Asada, S.; Izawa, K. 31st Symposium on Organometallic Chemistry, Japan, Oct. 30-31, Tsukuba, Japan, 1984; Abstract B202.
- The reaction catalyzed by RhCl(PPh₃)₃/20 PPh₃ gave 2' with 78% selectivity in 79% yield. Thus, RhCl(CO)(PPh₃)₃/20 PPh₃ turns out to be much better catalyst.
- We can assume the following six-membered ring chelate alkyl-Rh complexes as major (for 1 and 1a) or exclusive (for 5) key intermediates in the first step of intramolecular amidocarbonylation. Similar intermediates were discussed in a cobalt-catalyzed reaction of N-alkenylbenzamides.^{4C}

